

Department of Mathematics Stochastic Analysis (SS 2019) Dr. Alexander Fromm

Submission: 28.05.2019

Exercise sheet 7

Problem 1 (6 Points)

Let $(M_t)_{t>0}$ be a continuous martingale on a filtered probability space $(\Omega, \mathcal{F}, (\mathcal{F}_t), \mathbb{P})$.

(a) Show that if $M_t - M_0 \in L^2(\Omega, \mathcal{F}, \mathbb{P})$ for all $t \geq 0$, then

$$\mathbb{E}[(M_t - M_0)^2] = \mathbb{E}\left[\sum_{i=1}^n (M_{t_i} - M_{t_{i-1}})^2\right]$$

for arbitary $0 = t_0 < t_1 < \ldots < t_n = t, n \in \mathbb{N}$.

- (b) Show that if all sample paths of M have a finite and even uniformly bounded (total) variation, then almost all paths of M are constant functions.
- (c) Show that if for all $\omega \in \Omega$ and all t > 0 the sample path $s \mapsto M_s(\omega)$ has a finite variation on [0, t], then almost all paths of M are constant functions.

Problem 2 (4 Points)

Let $(B_s)_{s\geq 0}$ be a Brownian motion.

- (a) Let $f(s) := (1+s)^{-\frac{3}{2}}$, $s \in [0,\infty)$, and $M_t := \int_0^t f(s) dB_s$, $t \in [0,\infty)$. Show that $M \in H_0^2$ is well-defined and compute its norm $||M||_{\mathbb{H}_2}$.
- (b) Determine all $\alpha \in (0, \infty)$ for which $M_t^{\alpha} := \int_0^t (1+s)^{-\alpha} dB_s$, $t \geq 0$, is well-defined as an L^2 -bounded martingale.

Problem 3 - Euler scheme

(5 Points)

Let $(B_t)_{t\geq 0}$ be a Brownian motion. Let $f:[0,\infty)\to\mathbb{R}$ be Lipschitz continuous with Lipschitz constant L_f . For any $n\in\mathbb{N}$ define

$$f^{n}(s) = \sum_{k=0}^{\infty} f\left(\frac{k}{n}\right) \mathbb{1}_{\left[\frac{k}{n}, \frac{k+1}{n}\right)}(s), \qquad k \in \mathbb{Z}_{\geq 0},$$

$$M_{t}^{n} = \int_{0}^{t} f^{n}(s) dB_{s},$$
and $M_{t} = \int_{0}^{t} f(s) dB_{s}.$

Write M_t^n more explicitly as a linear combination of increments of the Brownian motion and show that for T > 0 we have

$$\mathbb{E}\big[\left|M_T - M_T^n\right|\big] \le \frac{C(T, L_f)}{n},$$

with some constant $C(T, L_f)$ that depends only on T and L_f and is non-decreasing in these values.

Total: 15 Points

Terms of submission:

- Solutions can be submitted in groups of at most 2 students.
- Please submit at the beginning of the lecture or until 9:50 a.m. in room 3523, Ernst-Abbe-Platz 2.